

Analysis of Hexabromocyclododecane Diastereomers and Tetrabromobisphenol-A Using a Novel Method Combining Supercritical Fluid Chromatography with Tandem Mass Spectrometry

Douglas Stevens¹, Lauren Mullin^{1,2}, Kenneth Rosnack¹, Ingrid Ericson Jogsten², Dawei Geng², Andy Aubin¹, Bert van Bavel²

¹Waters Corporation ²MTM Research Centre, Örebro University, Sweden

Overview

- Supercritical fluid chromatography (SFC) applicability to hexabromocyclododecane (HBCDD) and tetrabromobisphenol-A (TBBPA) analysis
- Chromatography and MS/MS method development
- Sample analyses results
- New/preliminary results: Chiral separations and additional flame retardants
- Conclusions

What is a Supercritical Fluid?

THE SCIENCE OF WHAT'S POSSIBLE.

UPC² TQ-S

• Waters THE SCIENCE OF WHAT'S POSSIBLE."

HBCDD Isomeric Separation

- HBCDD added to Stockholm Convention list of Persistent Organic Pollutants (POPs)
- Predominant HBCDD diasteromers and enantiomers

Waters

THE SCIENCE OF WHAT'S POSSIBLE.

Proportion dependent on sample type

Chromatographic Efficiency: 3 min separation of HBCDD and TBBPA

Waters

LC

β-5.05 100-

Faster Analysis Time and Chromatographic Orthogonality

THE SCIENCE OF WHAT'S POSSIBLE.®

β-

1.35

 $R_{s} = 10.42$

γ-

1.03

 $R_{s} = 5.07$

α-

Waters

SFC

100-

Time

Time

Method Development

UPC² TQ-S Waters

Chromatography Optimization

THE SCIENCE OF WHAT'S POSSIBLE.®

Waters

= peak detected, baseline separation = peak present, but not baseline separation

= peak not detected

Acquity[®]UPC² Binary Solvent Manager

General Data										
Г	Solvents				Pressure	Limits	Seal Wash: ?			
	A:	CO2			Low: 0	psi	1.0 min			
	<mark>B1</mark> ▼	Methanol		- 🔟	High: 6000 psi					
G	iradien	t								
	⊿₽	Time (min)	Flow (mL/min)	%A (CO2)	%В	Curve	•••			
	1	Initial	2.000	98.0	2.0	Initial	Gradient Start:			
[2	5.00	2.000	70.0	30.0	6	At injection			
- [3	5.50	2.000	70.0	30.0	6	C. Defensionation			
ĺ	4	5.60	2.000	98.0	2.0	6	 Before injection 			
ľ	5	45.00	0.000	98.0	2.0	11	O After injection			
ľ	8		•	•			0 ul			
С	Comment:									
_										

UPC² TQ-S Waters

Ionization Type Comparison

THE SCIENCE OF WHAT'S POSSIBLE.®

Vaters

Make-up Flow Composition

THE SCIENCE OF WHAT'S POSSIBLE.

ers

Method Limit-of-detection (LOD) and quantification (LOQ)

THE SCIENCE OF WHAT'S POSSIBLE.®

14

ES⁻ MS/MS conditions

	Compound Name	Parent (m/z)	Daughter (m/z)	Au	Dwell (s)	Cone (V)	Collision (V)	PIC	Comments
1	HBCD	640.6000	78.9000		0.050	30	20		
2	HBCD	640.6000	80.9000		0.050	30	20		

	Compound Name	Parent (m/z)	Daughter (m/z)	Au	Dwell (s)	Cone (V)	Collision (V)	PIC	Comments
1	TBBPA	542.5000	78.9000		0.050	30	50		
2	TBBPA	542.5000	80.9000		0.050	30	50		
3	TBBPA	542.5000	419.5000	☑	0.050	30	40		

- Capillary Voltage: 2.0
- Cone Voltage: 30
- Source Temperature: 150 °C
- Desolvation Temperature: 500 °C
- Desolvation Gas: 1000 L/hr
- Cone Gas: 150 L/hr
- Points per peak: 15

UPC² Gradient and Conditions

THE SCIENCE OF WHAT'S POSSIBLE.®

Time (min.)	% A	% B	Flow Rate (mL/min.)
Initial	98	2	2
2	90	10	2
2.01	90	10	2.5
2.3	98	2	2.5
2.31	98	2	2

- Column: HSS C18 SB (1.8µm 3.0 x 100 mm)
- Column Temperature: 40 °C
- Sample Temperature: 25 °C
- Phases: CO₂ (A) and methanol (B)
- Injection Volume: 1 μL
- Make-up flow composition: 0.1% NH₄OH in 2-propanol
- Make-up flow rate: 0.2 mL/min

Application to Biological Matrices

Sample Analyzed

- Can method separate and detect HBCDD isomers in complex matrices?
- Wide solvent compatibility with SFC so final extract used without solvent exchange
- Extracts of human plasma and whale blubber were donated from prior GC analyses

Human Plasma Detection: Low Level

THE SCIENCE OF WHAT'S POSSIBLE.®

	Calculated Concentrations ng/g lipid weight							
Sample	lpha -HBCDD	eta-HBCDD	γ-HBCDD					
HS1	4.21	<lod< th=""><th><lod< th=""></lod<></th></lod<>	<lod< th=""></lod<>					

Calibration Curve Results

	%RSDs (n=5)			
Concentration (pg/µl)	α -HBCDD	^β -HBCDD	γ- HBCDD	
0.25	<loq< td=""><td>7.9</td><td><loq< td=""></loq<></td></loq<>	7.9	<loq< td=""></loq<>	
0.5	5.6	11.6	16.7	
1	12.6	4.0	13.1	
5*	6.8	2.3	5.3	
10	3.0	2.2	3.7	
25	5.5	2.0	1.6	
50	2.3	2.2	1.8	
100	3.7	1.3	1.0	
Fit	Linear	Linear	Linear	
Weighting	1/x	1/x	1/x	
R2	0.998	0.999	0.999	
*n=4				

D

Whale Blubber Detection: High Level

THE SCIENCE OF WHAT'S POSSIBLE.®

ters

Calibration Curve Results

	%RSDs (n=5)				
Concentration (pg/µl)	α -HBCD	β- HBCD	Υ− HBCD		
0.25	<loq< td=""><td>11.7</td><td><loq< td=""></loq<></td></loq<>	11.7	<loq< td=""></loq<>		
0.5	9.8	6.4	15.1		
1	16.8	9.4	5.7		
5	4.3	1.0	2.3		
10	5.4	1.0	4.4		
25	3.4	2.2	3.4		
50	1.6	0.6	1.3		
100	3.4	2.6	3.5		
Fit	Linear	Linear	Linear		
Weighting	1/x	1/x	1/x		
R ²	0.998	0.999	0.999		

Ion Ratio Confirmation

					Ion Ratios	
Calculated	l Concentrat	tions pg/µl		lpha -HBCDD	eta-HBCDD	γ -HBCDD
Human Serum Samples	lpha -HBCDD	eta-HBCDD	γ-HBCDD	[1.123]	[1.097]	[1.11]
HS 1	0.575	ND	ND	1.342	ND	ND
Whale Blubber Samples				[1.112]	[1.163]	[1.127]
WB 1	12.88	ND	ND	1.108	ND	ND
WB 2	8.33	ND	ND	1.109	ND	ND
WB 3	47.7	ND	ND	1.117	ND	ND
WB 4	19.8	ND	ND	1.16	ND	ND
WB 5	45.5	ND	ND	1.088	ND	ND
WB 6	85.9	ND	ND	1.003	ND	ND

- Ion Ratio = Quantifier MRM area/Confirmatory MRM area
- Pass = +/- 20% of expected ion ratio
- Expected ratio determined by averaging all points' ion ratio in calibration series

Chiral Separations Preliminary Results

Chiral HBCDD Separation

THE SCIENCE OF WHAT'S POSSIBLE.®

- Prior LC method 4.0 x 200mm
 5µm PM-β-CD column with
 >15 min run
- UPC² prototype cellulose 2.1 x 150mm 2.5µm column on standards
- (+/-) α- and γ- separated using same co-solvent, (+/-) β- with different co-solvent
- Further method optimization underway

Chiral Separation EtOH co-solvent

(+/-) α -HBCDD in Whale Blubber

 α -HBCDD Enantiomers in Whale Blubber 350 300 250 **Area** Counts 200 ■ alpha-HBCDD E1 150 alpha-HBCDD E2 **Total alpha-HBCDD** 100 50 0 WB5 WB1 WB2 WB4 Whale Blubber Samples

THE SCIENCE OF WHAT'S POSSIBLE.®

Additional Flame Retardants Preliminary Results

Investigation of Traditionally GC-Amenable Flame Retardants

- Wide variety of FRs monitored in environment and biota
- Polybrominated diphenyl ethers (PBDEs) traditionally require GC-MS

laters

THE SCIENCE OF WHAT'S POSSIBLE.

Diverse Flame Retardants on Single Platform: Preliminary Detection

THE SCIENCE OF WHAT'S POSSIBLE.®

Waters

Flame Retardant	Current Chromatographic Technique	Optimum Ionization Technique (UPC ²)	Predominantly Observed Ion	Retention Time (min.)
triphenylphosphate	LC	ESI ⁺	$[M+H]^+$	1.01
$lpha$ –, eta –, γ –нвсоо	LC	ESI	[M-H] ⁻	0.88,1.01,1.33
ТВВРА	LC	ESI	[M-H] ⁻	2.11
tris (1,3-dichloro-2-propyl) phosphate	GC and LC	ESI	[M-H] ⁻	0.62
tris (2,3-dibromopropyl) phosphate	GC and LC	ESI	[M-H] ⁻	1.11
BDE 28	GC	APCI	[M-H] ⁻	0.88
BDE 33	GC	APCI ⁻	[M-H] ⁻	0.67
BDE 47	GC	APCI	[M-Br+O]	1.12
BDE 99	GC	APCI	[M-Br+O]	1.4
BDE 100	GC	APCI	[M-Br+O]	1.43
BDE 209	GC	APCI	[M-C6Br5]	4.19

Conclusions

- Rapid and efficient 3 min separation of α-,β- and γ-HBCDD demonstrated effective for complex samples
- Ability to inject wide range of solvents eliminates need for solvent exchange required for RP-LC
- Chiral separation method development underway for HBCDD enantiomers
- UPC² shows potential for single chromatographic platform for GC and LC amenable flame retardants

- Samira Salihovic (human serum extracts) and Anna Rotander (whale blubber extracts), MTM Research Centre, Örebro Universitet, Örebro Sweden
- Waters Corp Baiba Cabovska, Mike Jones, Ken Fountain and Mark Baynham, Chris Hudalla
- Reference for APCI Ionization of PBDEs:

S. Zhou, E. Reiner, C. Marvin, P. Helm, N. Riddell, F. Dorman, M. Misselwitz, L. Shen, P. Crozier, K. MacPherson and I. Brindle, *Analytical and Bioanalytical Chemistry*, 2010, 396, 1311-1320.